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Abstract

The Atlanta Commuters Exposure (ACE) Study was designed to measure in-cabin exposure to
roadway particulate pollution and acute health response in a panel of adults with and without
asthma following a 2-h scripted route along major highways in Atlanta. This article focuses

on methods and results of both continuous and integrated approaches used to measure the
concentration of PM» 5 mass, particle number concentration (PNC), black carbon (BC) mass,

and particle-bound PAHSs, in-cabin noise, PM elemental composition, elemental carbon, organic
carbon, water-soluble organic carbon (WSOC) content, and speciation of a broad range of organic
compounds including alkanes, hopanes, and PAHs. Speciated PM data indicates that in-cabin
particles derive from three non-co-varying processes: the resuspension of road dust containing
crustal elements and previously-deposited brake pad residue with a contribution of normal fuel
combustion, incomplete combustion processes producing PAHs and carbon particles, and particles
ablated from brake pads that have not previously deposited to the roadside environment. Most
in-cabin pollutants were elevated during the warm season with the notable exception of PNC. PNC
was not found to be correlated with most other pollutants. In-cabin concentrations were marginally
higher when windows were open.
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INTRODUCTION

Exposure to traffic and traffic-related air pollution has been associated with adverse health,
including respiratory responses such as decreased pulmonary function (Brunekreef et al.
1997; Gauderman et al. 2004; Sekine et al. 2004; McCreanor et al. 2007), increased
respiratory symptoms (Bayer-Oglesby et al. 2006; Vigotti et al. 2007), and increased
incidence of asthma or severity of asthma symptoms (Lwebuga-Mukasa et al. 2004; Zmirou
et al. 2004; McConnell et al. 2006, 2010), as well as with cardiovascular outcomes such as
increased levels of atherosclerosis (Hoffmann et al. 2007), alterations in heart rate variability
(Riediker et al. 2004; Schwartz et al. 2005; Adar et al. 2007), and increased incidence of
myocardial infarction (Peters et al. 2004; Lanki et al. 2006; Rosenlund et al. 2006; Tonne
et al. 2007). Toxicological evidence suggests these associations are related to both the size
and composition of traffic-related particulate matter (PM) (Brook 2008; Valavanidis et al.
2008; Mgller et al. 2010). The number distribution of fresh vehicle emissions is dominated
by particles in the ultrafine size range (<100 nm) (Kittelson 1998; Robert et al. 2007a,b),
which have the highest deposition rates in the alveolar region of the lung (Heyder et al.
1986), and insoluble ultrafine particles are removed at a very slow rate (Stahlhofen et al.
1995; Mdller et al. 2008). In addition, fresh traffic emissions contain constituents that are
able to participate in oxidant-generating reactions in the airways, including transition metals,
polycyclic aromatic hydrocarbons (PAHSs), and other organic compounds (Chellam et al.
2005; Lough et al. 2005). The investigation of the mechanistic link between air pollution
and health response is therefore facilitated by assessing exposure to oxidant-generating PM
components and ultrafine PM (or its surrogate, particle number concentration, PNC).

Previous studies have investigated in-cabin exposures in a number of different settings.
Rodes et al. (1998) measured the concentrations of PM mass, black carbon (BC), and

a limited selection of metals and organics in vehicles on California roadways. Riediker

et al. (2003, 2004) measured in-cabin PM> 5, PAHS, elemental carbon and elements in
North Carolina Highway Patrolmen along with cardiovascular response. Adar et al. (2007)
measured PM> 5 and BC exposure and cardiovascular response in a panel of senior citizens
riding buses in St. Louis. Fruin et al. (2004) measured PNC, BC, and PAHs with a goal to
identify vehicle, roadway, and driving characteristics that influence in-cabin concentrations.
A review of studies examining transportation-related ultrafine particle exposures was
published by Knibbs et al. (2011) and emphasized the need for further studies to elucidate
the health effects of transit exposures. In light of these foundational studies, an urgent need
continues to exist for detailed investigation of exposure to specific traffic-related pollutants
etiologically-involved in the human health response.

The Atlanta Commuters Exposures (ACE) Study was established with a primary aim

to investigate associations between in-cabin particulate pollution exposures and health
responses in a panel of car commuters both with and without asthma. The ACE study
utilized both continuous and integrated measures of PM, including methods reported by
predecessor studies (e.g., PNC, BC, PM, 5 mass, PM elemental composition) as well as
methods not previously applied to in-cabin studies (e.g., speciation of organic compounds
including alkanes, hopanes, and PAHs from integrated filter samples). In addition, in-cabin
noise level was continuously monitored, and a corresponding suite of respiratory and
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cardiovascular endpoints was measured at multiple time points following each commute.
The ACE study included an initial study funded by the Centers for Disease Control and
Prevention (referred to as ACE-1) and a follow-up study funded by the Environmental
Protection Agency (ACE-2). The current manuscript presents data from ACE-1 with a focus
on the magnitude, composition, and nature of the measured in-cabin exposures. Human
health response measured during the commutes and associations between the health and
pollutant measurements will be presented in companion manuscripts.

2. METHODS

2.1. Study Overview

In-cabin concentrations of PM and PM components were measured for 42 subjects, each

of whom were to complete two commutes during the protocol for a total of 84 scheduled
commuting sessions. Commutes were conducted in each subject’s personal vehicle and
followed a scripted route of approximately 2 h duration during the morning rush period

in Atlanta (~7-9 am). Commute routes were selected to maximize the time spent on
controlled-access freeways (Figure S1 in the online supplementary information [SI]) and
were conducted during all seasons (2010-2011) and in all meteorological conditions.
Vehicle windows were alternately opened and closed every 15 min throughout the commute.
Compliance was voluntary and was greater when the weather was pleasant. While windows
were closed, subjects were permitted to use the vehicle’s air conditioner or ventilation
system set to outside air rather than the recirculation setting. Additional details describing
the study design and implementation may be found in the SI.

2.2. Continuous Measurements

The continuous instruments used for this study are listed in Table 1. These devices were
placed in a sampling tray located in the front passenger seat of the vehicle with sample inlets
directed toward the middle of the vehicle cabin and no more than 1 m from the breathing
zone of the driver (Figure S2). In addition, vehicle location and speed was continuously
recorded with a GPS device, and a small camera was affixed to the inside of the windshield
facing the direction of travel and recorded a still image of traffic conditions every 2 s. A
more detailed description of continuous instrumentation is available in the SI.

2.3. Integrated Measurements

Integrated measurements of particle mass and composition were collected using filter
holders and a cascade impactor installed in the front passenger seat. Flow through these
filters was provided by vacuum pumps installed in the trunk of the vehicle and powered by
two deep-cycle lead-acid batteries also installed in the trunk. Exhaust from the pumps was
filtered and diverted to the exterior of the vehicle. Flow was controlled using critical orifices,
and flowrate measurements were performed at the beginning and end of each commute.
Additional details are included in the SI.

2.3.1. PM Speciation—Fine mode PM speciation analysis included measurements of
elemental composition, organic speciation (n-alkanes, hopanes, and PAHS), organic and
elemental carbon (OC and EC) mass concentration and water-soluble organic carbon
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(WSOC). The enrichment factor (EF) for elements was calculated as the ratio of an element
to aluminum in the filter sample divided by the ratio of that same element to aluminum in a
representative soil sample from Georgia. Additional details are available in the SI.

2.4. Data Analysis

Descriptive statistics and correlation analyses for each pollutant measure were calculated for
all commutes and then for commutes stratified by warm season (15 April-14 October) or
cold season (15 October—14 April). Similar analyses were conducted for each continuous
pollutant parameter stratified by window open/closed status. Factor analysis of integrated
particle species was conducted for dimension-reduction purposes using a varimax rotation
method to organize all PM speciated constituents into a small number of groups of co-
varying groups. Statistical analyses were conducted using SAS v9.2 (SAS Institute Inc.,
Cary, NC, USA).

3. RESULTS AND DISCUSSION
3.1. Study Overview

A total of 81 commutes were completed with 41 (51%) occurring during the cold season
and 40 (49%) during the warm season. Data completeness, defined as the ratio of samples
successfully collected to the number of expected samples, is listed in Table 1. Additional
details are included in the SI.

3.2. Integrated Measurements

A summary of filter-based measurements is presented in Table 2, including a selection of
results from speciation analysis. A total of 19 field blanks were collected and analyzed for
each of the filter-based sample lines (i.e., 23% of total filters collected), and the method limit
of detection (LOD) for each parameter was defined as three times the standard deviation

of the field blanks. For many pollutant parameters, field blank values were below the
instrumental detection limit, and the method LOD for these parameters was assumed to be
the instrumental LOD. The current results have been blank-corrected.

3.2.1. EC-OC Analysis—The assessment of semi-volatile OC was not an original
primary aim of ACE-1, and sample lines were therefore not denuded. OC concentrations
measured using the TOT method consequently comprised a very large proportion or even
exceeded the gravimetrically-derived PM5 5 concentrations (18-650%, median = 110%).
This positive artifact is due to the adsorption of semi-volatile OC compounds onto the

high surface area of the quartz fiber substrate of the OC filters (Mader and Pankow 2001).
Previous studies have found the positive OC artifact to be 10-60% of the OC concentration
(Turpin et al. 2000; Subramanian et al. 2004), and to be higher when sampling fresh, less
photo-chemically oxidized emissions (Baumann et al. 2003) or when sampling for short
durations with little time for the filter to reach gas-particle phase equilibrium (Turpin et al.
2000). Both of these conditions were present during the ACE-1 sampling sessions and likely
contribute to the elevated OC artifacts observed.
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Mean in-cabin EC mass measured during the commutes was 2.8 + 1.9 zg-m~3, and OC

mass was 19.2 + 6.9 zg-m~3. These concentrations similar to or exceed previously reported
non-denuded roadside measurements. Weber et al. (2007) reported the EC concentration as
3.6+1.1g-m3and OC as 10.8 + 1.6 zg-m~3 in summer alongside 1-75/85 in Atlanta
(Weber et al. 2007), and Yan et al. (2009) report summertime EC as 4.1 + 1.1 zg-m~3 and
OC as 8.2 + 1.2 ug-m~3 and wintertime EC as 2.7 + 1.3 yg-m=3 and OC as 5.1 + 2.5

19-m~3 at the same location (Yan et al. 2009). This location is situated at the downtown
portion of the route typically used by the current study. In comparison to other cities, our
in-cabin measurements are comparable yet slightly higher than nondenuded measurements
along similar style roadways in Los Angeles (EC=1.8+1.2 ygm=3,OC =14.9+5.2
1-m~3) (Phuleria et al. 2007) and Hong kong (OC = 13.4 + 7.9 1g-m~3) (Cheng et al. 2010).
It should be noted that the referenced values reflect 24 h integrated averages (Yan et al.

are 12 h averages) whereas our measurements are 2 h averages conducted at the time of
peak traffic volume. The mean ratio of EC/OC for in-cabin measurements was 0.14 + 0.08,
whereas it was 0.33 and 0.50 as measured in Atlanta by Weber et al. (2007) and Yan et al.
(2009) respectively. Plausible explanations for our lower observed EC/OC ratios are that (a)
our in-cabin samples were more influenced by a positive OC artifact than the referenced 12-
or 24-h roadside measurements, (b) the fraction of vehicles that are diesel is lower during the
morning rush hour than the 24-h average (as noted in Georgia Department of Transportation
data), and (c) sampling for this study was conducted after implementation had begun for the
EPA 2007 Heavy-Duty Highway Rule, which requires new heavy-duty diesel trucks to be
fitted with a diesel particulate filter. Vehicles complying with the 2007 rule have much lower
EC emissions than vehicles meeting the previous standard (Khalek et al. 2011).

3.2.2. WSOC Analysis—The mean in-cabin WSOC concentration was observed to be
6.2 + 3.9 £g-m~3, values that are comparable to other non-denuded roadside measurements.
Weber et al. (2007) reported 4.7 + 0.7 zg-m~3 of WSOC along 1-75/85 in Atlanta (Weber
et al. 2007), Ho et al. (2006) measured 2.1 - 0.3 g-m~3 during summer and 3.5 + 0.5
10-m~3 during winter at a roadside location in Hong Kong (Ho et al. 2006), and Bao

et al. (2009) measured 6.2 g-m~3 in summer and 2.5 + 0.5 zg-m~3 in in winter at a
roadside location Japan (Bao et al. 2009). Our in-cabin measurements are higher than
WSOC concentrations reported for urban settings that are more distant to large roadways.
Nonroadside measurements in Atlanta range between 0.5-3.0 1g-m~2 and vary depending
on time of year and distance from -road (Hennigan et al. 2009; Zhang et al. 2012a,b). The
WSOC/OC ratio for the ACE-1 study was 0.36 + 0.28, a value that is similar to what is
typically observed in other ambient measurement settings. Previous measurements in the
Atlanta area suggest a WSOC/OC ratio typically occurring in the 0.4-0.6 range (Weber

et al. 2007; Zhang et al. 2012b). Ongoing speciation of the carbon fraction on the filters,
including a characterization of the brown carbon content, may provide additional insight into
the source of in-cabin WSOC measured during these commutes.

3.2.3. Factor Analysis of Elements and Organic Species—In-cabin
concentrations of most PM elements were comparable to and within a factor of 2 of the
in-cabin measurements reported by Riediker et al. (2003) that used X-ray fluorescence to
quantify elemental concentrations. An earlier study by Rodes et al. (1998) found in-cabin
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samples for most elements to be below LOD, although the few overlapping species that
were within their detectable range are within a factor of 5 of the current results. In addition,
our in-cabin crustal element concentrations are similar to those previously reported in
other roadside microenvironments (Ntziachristos et al. 2007; Hays et al. 2011), while the
concentrations of anthropogenic elemental species (EF > 100) were a factor of 2-3 higher
than measurements from a roadside location in North Carolina (Hays et al. 2011). To

our knowledge, these are the first reported measurements of in-cabin concentrations of
particulate organic species during typical commuting activities. In-cabin concentrations of
hopanes, alkanes, and PAHs were similar to long-term averages at the St. Louis supersite
(Sheesley et al. 2007), but were substantially higher than roadside measurements in North
Carolina (Olson and McDow 2009). The predominant in-cabin PAH species reported

here are fluoranthene, pyrene, benzo[b+k]fluoranthene, and benzo[a]pyrene. This profile is
similar to the St. Louis and North Carolina studies, although fluoranthene was not reported
in North Carolina and the St. Louis study reported relatively high levels of indeno[1,2,3-
cd]pyrene, which was below LOD in 67% of the current samples.

Initial factor analysis was conducted separately for each class of speciated components
(e.g., elements, PAHSs, alkanes), and it was observed that among the speciated PAHS,
fluoranthene and pyrene were highly correlated with one another and comprised a single
PAH factor while benz[a]anthracene, chrysene, benzo[b+k]fluoranthene, benzo[a]pyrene,
benzo[e]pyrene, and coronene comprised a another PAH factor. These groupings are
consistent with previous findings using principal component or factor analysis (Guo et al.
2003; Ravindra et al. 2008) and loosely correspond to factors related to diesel and gasoline
combustion respectively. Fluoranthene and pyrene have a lower molecular weight and higher
volatility than the other measured PAHSs, raising the possibility that these groupings may

be temperature-dependent. Given that these samples were collected in-cabin, we did not
observe a significant difference in cabin temperature or fluoranthene concentration between
seasons.

For the elemental species, crustal elements comprised a primary factor, with copper, zinc,
and lead comprising a secondary factor. For the speciated organic compounds, it was found
that the sum of speciated hopanes comprised the primary factor and the sum of n-alkanes
with 23-27 carbons comprised a secondary factor. Based on these initial analysis results,
factor analysis for all classes of compounds was performed and included input variables

as illustrated in Figure 1. This selection of variables captured most of the variance in the
dataset with the least amount of missing data (/A= 50 for factor analysis). Final factor
analysis did not include variables of which other measured parameters comprised a subset
(e.g., EC, OC, WSOC, and PM, 5 mass); however, exploratory factor analysis modeling was
performed including one or more of these variables.

The largest factor (explaining 47% of the variance) was dominated by crustal elements

and other species that are typically present in resuspended road dust. The conventional EF
threshold value for crustal elements is 10 (Duce et al. 1975) though elements with EF =
10-100 also have a strong crustal component. By this metric, the dominant crustal elements
were Fe (EF = 19.8), Al (EF = 1.0 by definition), and Ca (EF = 3.9). Other crustal elements
with modest concentrations also exhibited factor loadings of approximately 0.7 or greater
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with factor 1, including K, Mg, Mn, and Ti. During exploratory model runs including OC as
a variable, OC was most closely associated with factor 1 (factor loading = 0.70).

Notably, S, Ba, and Sbh were also shown to have large loadings with factor 1 and were
strongly correlated with crustal elements. These elements are highly enriched with EFs
several orders of magnitude greater than 1.0 and are present in brake pad material (Schauer
et al. 2006; Thorpe and Harrison 2008), while S is also present in tire material, lubricating
oil and sulfate aerosol. Given that the variance for S, Ba, and Sb closely matches that of

the main crustal species, we believe that particles containing these elements had previously
deposited in the roadside environment and that the primary source of Ba and Sb in the
in-cabin microenvironment is the resuspension of road dust. The factor loading for S is
somewhat lower than for the other species in factor 1, and correlations between S and the
main crustal elements are similarly less than between Ba or Sb and crystals. This suggests
that though resuspended dust is likely to be an important source of S, other sources such

as sulfate aerosol or lubricating oil may be contributing to S concentrations. It is interesting
to note that Ba and Sh have a variance structure matching that of crustal elements rather
than that of other elements with a brake pad source such as Cu, Zn, and Pb. A previous
analysis of the difference in composition between brake pad bulk material and generated
dust suggested that some brake pad components are emitted directly into the air while others
form a “transfer film” at the disc/pad interface that subsequently dislodges to the roadway
(Thorpe and Harrison 2008). This explanation is consistent with an interpretation that in the
current study, Ba and Sb deposit to road dust before being resuspended whereas a higher
proportion of Cu, Zn, and Pb enter the vehicle cabin directly following the braking action of
nearby vehicles, including the one being driven.

The next largest factor (explaining 18% of the variance) was dominated by PAHSs. Initial
factor analysis including just PAH species indicated that fluoranthene and pyrene comprised
a separate factor from other PAHSs. This finding is reflected in the modest factor loading

on factor 2 for both fluoranthene (0.58) and pyrene (0.23). Despite this, these PAHs

were included in factor 2 given that their factor loading is near zero or negative for all

other factors. During exploratory model runs including EC as a variable, EC was strongly
associated with this factor (factor loading = 0.82). In addition, it was found that although
hopanes and alkanes were not strongly associated with any factor, the highest factor loading
for hopanes was with factor 1 while that of alkanes was with factor 2. Although these

are both markers of petroleum combustion (Schauer et al. 1996), our findings suggest

that for ACE-1, factor 1 included a contribution of normal fuel combustion (reflected by
hopanes and OC factor loadings) while factor 2 reflected a contribution of incomplete

fuel combustion (underscored by PAHs and EC factor loadings). Furthermore, a third

factor (explaining 12% of the variance) was comprised of copper and zinc with a smaller
contribution from lead, indicative of brake pad and tire wear (Thorpe and Harrison 2008).

The results from the current factor analysis, which were novel in utilizing a broad suite

of elemental and organic particulate components, suggest that for the ACE-1 commutes, in-
cabin PM, 5 was impacted by three processes that do not necessarily co-vary: resuspension
of road dust with a contribution of normal fuel combustion, incomplete combustion of
petroleum fuels, and mechanical generation of particles from brake pad and tire wear. All
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three processes are influenced by meteorological and traffic conditions. Factor 1 would
conceptually be maximized by dry conditions with free-flowing traffic, factor 2 is consistent
with slow or stopped traffic and a larger proportion of diesel vehicles, and factor 3 is
consistent with stop-and-go traffic with disproportionate braking action.

3.3. Continuous Measurements

Continuous measurements of BC, pbPAHs, PNC, and PM, 5 mass were conducted with a
time resolution of 1 min or less. The mean values of these measurements are similar to those
previously reported for in-cabin (Riediker et al. 2003; Adar et al. 2007; Zuurbier et al. 2010)
or roadside (McCreanor et al. 2007) air pollution exposures. Notably, the primary method
for measuring PNC in this study (TSI Inc. P-Trak) had a lower cutpoint of 20 nm whereas
many of the referenced studies used an instrument with a 10-nm cutpoint. For 31 of the 84
commutes in our study, both instruments were used, and in this subset, 29 + 15% of PNC
was observed to be in the 10-20 nm size range. The mean concentration of ppPAH for the
current study was a factor of 5 higher than that reported by Riediker et al (2003), though that
study was conducted in a less populated area, at different times of day, with traffic volumes
that were likely lower than those in the current study (Table 3). Our in-cabin values were
very similar to those measured on the 1-405 freeway in Los Angeles and were a factor of 2
lower than those on the more diesel-influenced 1-710 freeway (Westerdahl et al. 2005; Zhu
et al. 2008). These values were also comparable to morning rush hour measurements made
at a nonroadside location in Mexico City (Marr et al. 2006; Thornhill et al. 2008).

3.3.1. Relationship Between Continuous and Integrated Measurements—The
ACE-1 sampling design included an integrated measurement that closely corresponded to
the BC, pbPAHSs, and PM, 5 mass continuous measurements. We conducted linear regression
analyses for these measurements by pairing the average of the continuous measure for a
commute with the integrated measure of the same commute. For PM, 5 mass, the proxy
continuous measure based on fine mode number concentration is by definition correlated
with integrated PM, 5 mass since it is scaled by a density estimate derived from the
integrated measure; however, the correlation of continuously-measured volume to integrated
mass concentration was modest (Pearson’s 7= 0.56). For BC, the continuous measurements
were integrated by comparing the attenuation across the instrument’s internal filter at the
beginning and end of the commute rather than averaging the 1-min values. There was
modest correlation between this integrated value and filter-based EC (Pearson’s r=0.72)
(Figure S3) (in the online Sl). The slope of the linear regression model was close to 1

(slope 1.1, p[Hg:slope 1] = 0.37) though the intercept was 2.8 + 0.41 1g-m~3. Given that

the TD-GC/MS analysis of filter samples and the continuous measurement of pbPAHs
employ very different methodologies, a comparison of these approaches must be interpreted
cautiously. A discussion of this comparison is included in the SI.

3.3.2. Correlation of Continuous Measurements with Each Other—Correlation
analysis was performed for each continuous measure with the other continuous parameters
(Table 4). For the 1-min data, the large number of data points leads to all correlation
coefficients being different than zero with p <0.0001; however, the associations among most
pollutants were modest to weak on this time scale. In particular, in-cabin PM, 5 was weakly
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associated with the other continuously measured pollutants (/2 = 0.03-0.06), whereas PNC
exhibited a slightly stronger association with BC and pbPAH (72 = 0.12-0.14). This was
largely expected since both BC and pbPAH share a common source and were associated
with each other (/2 = 0.56). The correlations of commute averages were stronger than the
1-min averages for PM5 5 and all other pollutants but were nearly the same for PNC with BC
and pbPAH. This change in correlation coefficient with time scale is in general agreement
with that observed in a St. Louis bus study (Adar et al. 2007).

Descriptive statistics for in-cabin concentrations stratified by window status (open or closed)
are shown in Table 5. Although this study was not designed to quantify the influence of
specific exposure factors on in-cabin pollutant concentration as done in other studies (Fruin
et al. 2008; Hudda et al. 2011), we did collect sufficient data to examine differences in in-
cabin concentrations by window status. A 50 commutes complied with the window-opening
protocol, though it should be noted that the window-open periods were not representative
since study subjects were more likely to comply when temperatures were mild and there
was no precipitation (54% of cool season commutes were compliant compared to 61% of
the warm season commutes). The difference in median concentration for in-cabin PM, 5 was
28% higher when windows were open; for PNC, the increase was 24%; for BC, it was 18%,
and for pbPAH, it was 7%. In addition, although PM¢oarse (D 2.5-10 £m) mass was not
measured for this study, the largest diameter channel on the AeroTrak roughly corresponds
to this size range, and the difference in the number concentration measured by this channel
was 26% higher during open window periods. These results are consistent with previous
findings that vehicle air filters can modestly reduce in-cabin particle concentrations, though
there is much variation with vehicle model and age and particles in the 0.1-1.0 gm

size range have less than 50% filtration efficiency (Qi et al. 2008). Figure 2 shows the

time series for PM, 5 and PNC for the vehicle with the most pronounced difference in
concentration between windows open and closed periods. For this vehicle, the in-cabin
PM, 5 concentration when the windows were open is 110% higher than when the windows
are closed. For PNC, although values were 44% higher when windows were open, there
were still time periods with high PNC when the windows were closed. This is consistent
with previous studies which have found that ultrafine particles efficiently infiltrate car cabins
even when windows are closed and circulation air is filtered (Fruin et al. 2008; Hudda et al.
2011).

3.4. Seasonal Variation

Several important pollutant parameters, both integrated and continuous, exhibited seasonal
variation in concentration as well as in their correlation patterns with other pollutants. For
the purposes of this analysis, we defined the warm season as 15 April-14 October and the
cool season as 15 October—14 April. A summary of the seasonal variability is presented in
Table 6.

Most of the measured pollutant values were higher during the warm season, though this
was only statistically significant for continuously measured pollutants. The exceptions were
OC, WSOC, and PNC, which were higher in the cool season, with only PNC exhibiting
statistically significant seasonal differences. Some of these seasonal differences are likely
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influenced by window status given that window-opening compliance was greater during the
warm season. During the warm season, PM, 5 and Fe (representing crustal elements) were
highly correlated with WSOC (r=0.83 and 0.76 respectively, p <0.0001 for both); however,
this correlation is not present in the cool season. The magnitude of the correlation and the
strength of the p-value suggest this is not a chance finding. The only other warm season
correlated pollutants share a source and are chemically similar (e.g., EC, BC, and pbPAH).
During the cool season, most parameters were reasonably well-correlated with each other
with significant or marginally-significant p-values. The exception in this case is WSOC,
which was weakly or negatively-correlated with all other pollutants. Both of these seasonal
trends reflect the importance of biogenic sources of OC and WSOC in this region. In the
cool season, especially during the morning rush period, the mixing height is low, inducing
greater covariance among most anthropogenic pollutants due to the effect of a reduced
mixing volume. Although cool season biomass burning contributes somewhat to WSOC
concentration, WSOC was not shown to co-vary in the same manner as other pollutants in
the absence of biogenic sources.

4. SUMMARY AND CONCLUSIONS

The ACE-1 Study measured the in-cabin concentration of a wide-range of specific pollutants
in a variety of cars operating under typical driving conditions for Atlanta highways. This
was the first study to include measurements of elemental and organic speciation of PM,
elemental and organic carbon, WSOC, and time-resolved PM, 5 PNC, BC, and pbPAH

in a study of this size. Factor analysis of speciated data indicates the influence of three
non-co-varying processes: resuspension of road dust with a contribution of normal fuel
combustion, incomplete combustion of petroleum fuels, and the infiltration of nondeposited
brake pad particles into the vehicle cabin. PNC showed very modest correlation with other
pollutant measures and was unique in being significantly-higher in the cool season. Further
analysis of this exceptionally large data set is ongoing, and companion manuscripts will
present results of health outcome measures and detailed examination of exposure data.
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FIG. 1.

Factor analysis of integrated samples (N = 50). PM constituents are labeled by name and
factor loading followed by the mean * standard deviation concentration and enrichment
factor (for elements). Hopanes and alkanes are not unambiguously associated with any
factor, and factor loadings are shown for all three factors. Hopanes are the sum of

17 a(H),218(H)-29-norhopane and 17 a(H),218(H)-hopane. Alkanes are the sum of C23-C27
n-alkanes.
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FIG. 2.
Time series analysis for PM2.5 (a) and PNC (b) for an atypical commute with discernible

cycles between windows open and closed. Shaded areas are when windows are open.
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. . a
Correlation of continuous data

PM2.5 PNC BC pbPAH
PM;s 0.18 0.25 0.20
7314 7350 7467
<0.0001 <0.0001 <0.0001
PNC 0.34 0.37 0.35
73 8093 7990
0.0032 <0.0001 <0.0001
BC 0.50 0.26 0.75
75 74 8008
<0.0001  0.0256 <0.0001
pbPAH 0.43 0.31 0.86
75 74 76

<0.0001  0.0067  <0.001

TABLE 4

Page 21

a_. . . - . . . . .
First row is Pearson’s correlation coefficient; second row is A third row is p-value for the correlation. Above the blank boxes are the correlations
of 1-min data, and below the blank boxes are correlations of commute averages.
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